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Designing equitable algorithms

Alex Chohlas-Wood1  , Madison Coots2  , Sharad Goel    2   & Julian Nyarko1 

Predictive algorithms are now commonly used to distribute society’s 
resources and sanctions. But these algorithms can entrench and exacerbate 
inequities. To guard against this possibility, many have suggested that 
algorithms be subject to formal fairness constraints. Here we argue, 
however, that popular constraints—while intuitively appealing—often 
worsen outcomes for individuals in marginalized groups, and can even leave 
all groups worse off. We outline a more holistic path forward for improving 
the equity of algorithmically guided decisions.

With the advancement of statistical methods, computational resources 
and data availability, the past decade has seen a dramatic increase in the 
use of algorithmic decision-making across all facets of life. Banks make 
algorithmic predictions to assess who is at risk of default and should 
thus not be offered a loan1, and to identify possible instances of money 
laundering2. In healthcare, algorithms are used to decide who gets 
screened for diseases such as diabetes3, and to allocate resource-limited 
benefits such as kidney transplants4 and HIV-prevention counseling5. 
Criminal justice agencies use algorithms to inform the allocation of 
police resources6,7, to assist investigators8,9, to inform incarceration 
and sentencing decisions10–12 and to limit the impact of perceived race 
on prosecutorial charging decisions13. Technology companies use 
algorithms to decide who sees advertisements for housing14, employ-
ment opportunities15, and various goods and services. Child services 
agencies use algorithms to estimate the risk of an adverse event such 
as child abuse16–19. City agencies use algorithms to prioritize building 
inspections20. School districts use algorithms to assign students to 
their preferred school21 and to identify students who are at risk of fall-
ing behind on learning material22.

While it appears that the use of algorithms for critical decision-
making will only increase in the near future, some have pointed to 
a heightened danger that these same algorithms could influence  
decision-making in a way that is unfair to marginalized groups, such  
as racial or ethnic minorities23,24. Legal scholars have argued that  
certain forms of algorithmic decision-making may even be in conflict 
with important constitutional or regulatory protections granted to 
groups defined by race and ethnicity, rendering them impermissi-
ble25–29. In response to these concerns, researchers have developed  
several fairness criteria with the goal of ensuring that algorithms 
achieve equitable decision-making30,31. These criteria range from 
excluding certain legally protected characteristics—such as race, eth-
nicity, gender and their close correlates—from an algorithm’s inputs, 

to requiring certain key metrics, such as error rates, be equal across 
demographic groups.

Today, adherence to these fairness constraints has become com-
mon practice in the design of algorithms across many contexts. How-
ever, a dogmatic implementation of these constraints often comes at 
the cost of inflicting additional burdens on individuals in all groups, 
including those in marginalized communities. For instance, in medi-
cine, common diabetes risk calculators that ignore a patient’s race 
and ethnicity systematically underestimate diabetes risk for Asian, 
Hispanic and Black patients and overestimate diabetes risk for white 
patients3. There may well be good reasons to exclude the use of race in 
medical diagnoses—for instance, to guard against pernicious attitudes 
of biological determinism32—but this constraint comes at the cost of 
poorer treatment for patients in every group33. In this Perspective, we 
lay out this tension between fairness constraints and welfare in more 
detail and make several recommendations to address this issue as well 
as other problems commonly encountered when building algorithms. 
In doing so, we draw extensively from a recent, more technical exposi-
tion of algorithmic fairness by Corbett-Davies et al.102. We hope that 
our discussion helps researchers, policymakers and practitioners 
understand the subtleties of popular fairness constraints, and leads 
to the design of more equitable algorithms.

Popular fairness constraints and their 
consequences
Over the past several years, researchers across numerous fields have 
considered the equitable design of algorithms, including in computer 
science and statistics31,34–55, law25,26,28,56–60, medicine61–65, the social sci-
ences66–72 and philosophy73–75. Many of these studies have proposed 
formal statistical principles for designing ‘fair’ algorithms. Here we 
group these myriad fairness principles into three conceptual cate-
gories: (1) blinding, in which one limits the effects of demographic 
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shown in the left-most panel of Fig. 1, Asian patients with a nominal, 
race-blind diabetes risk of 1.15% have an empirical rate of diabetes 
close to 2%. We accordingly expect our hypothetical patient to benefit 
from screening, even though the race-blind model would recommend 
against it. The race-aware model, in contrast, correctly estimates that 
patients like this have an elevated risk of diabetes and thus recommends 
they be screened.

Analogously, consider a hypothetical 40-year-old white patient 
with a BMI of 20.5 kg m−2. The race-blind model estimates our hypo-
thetical patient has a 1.9% risk of diabetes, but, in reality, only 1.3% of 
patients like this have diabetes. The race-blind model would recom-
mend our patient be screened, even though we expect screening to 
impose a net cost in this case. As before, the race-aware model correctly 
estimates that patients like this have a relatively low risk of diabetes 
and thus advises against screening.

In general, if diabetes risk is estimated without the use of race and 
ethnicity, some Asian, Black and Hispanic patients expected to benefit 
from screening would be counseled against screening, while some 
white patients expected to incur a net cost from screening would be 
screened anyway. However, models that use a patient’s race and ethnic-
ity are able to account for differences in diabetes risk across groups, 
and so do not make these systematic errors.

In the plot on the right side of Fig. 1, we show the consequences 
of banning race and ethnicity from the algorithmic inputs on the two 
groups with the largest disparity: Asian and white patients. When avoid-
ing the use of race and ethnicity, nearly 14% of Asian patients would not 
receive a screening even though they would be expected to benefit from 
it. Similarly, about 9% of white patients would be screened for diabetes 
even though they would be expected to incur a net cost from screening.

This example highlights how calibration itself can be viewed as 
a fairness principle. Calibration ensures that risk scores correspond 
to the same empirical risk across groups, and, accordingly, that deci-
sions based on those risk scores treat similarly risky people similarly. 
Calibration often occurs naturally when risk scores are derived from 
sufficiently flexible statistical models that include race and other 
demographic features, though achieving perfectly calibrated risk 
scores across multiple demographic groups is an ongoing area of 
research76. In general, as discussed further below, calibration is at odds 
with other popular formal fairness constraints. In particular, blinding 
often results in risk scores that are not calibrated (as shown in the left-
most panel of Fig. 1); and applying a threshold rule to calibrated risk 
scores typically results in decisions that violate equalized decision 
and error rates31,36,37,77.

Blinding seeks to address the direct effects of race on decisions.  
A related family of causal fairness criteria aims to reduce both the 
direct and indirect impacts of race45, since even if algorithms are for-
mally ‘blind’ to race, race may still affect decisions indirectly through 
the algorithm’s other inputs. This line of work, however, suffers from 
at least two serious limitations. First, it requires formalizing a causal 
effect of race, a long-standing statistical and conceptual problem 
replete with challenges that are succinctly captured by the mantra ‘no 
causation without manipulation’78. In particular, one must make sense 
of counterfactuals in which a person’s race is altered74,79–81, a notion that 
is difficult, and perhaps impossible, to make precise. Second, recent 
mathematical results have shown that these causal fairness definitions 
constrain algorithms so severely that they often produce unintended 
results55. For example, under one prominent causal fairness definition, 
the only permissible algorithm in many situations is one that makes the 
same decision for every individual, irrespective of their risk factors. 
Because of these limitations, this approach is at odds with the goals 
of many policymakers.

The consequences of equalizing decision rates
A second common fairness constraint requires that algorithmic deci-
sions be made at equal rates across demographic groups—defined, for 

attributes—such as race—on decisions; (2) equalizing decision rates 
across demographic groups; and (3) equalizing error rates across 
demographic groups.

To many, these principles represent intuitively appealing under-
standings of fairness, and they have been applied to a variety of con-
texts in which algorithms guide decisions. They are often implemented 
with the explicit goal of protecting members of disadvantaged com-
munities, but, as we discuss next, strict adherence to these principles 
often leads to worse outcomes for those in marginalized groups—and 
society as a whole33.

To illustrate with a practical example, consider the case of diabetes 
risk estimation. Approximately one in ten US citizens suffer from type 
2 diabetes, which can lead to other serious health problems, including 
heart disease, kidney disease and vision loss. Upon learning of their 
diagnosis, patients can better manage their condition—for example, 
through changes in diet and physical activity—making early detection 
critical to improving health outcomes. In theory, every patient could 
be screened at regular intervals in an effort to detect diabetes early. 
But screening itself comes with monetary and non-monetary costs 
(for instance, patients may need to take time off from work, resulting 
in lost income). The medical community accordingly recommends that 
only those with at least a moderate risk of developing diabetes undergo 
screening. For example, results by Aggarwal et al.3 suggested that 
patients will typically benefit from screening if their risk of diabetes is 
above 1.5%. To follow this recommendation, statistical risk algorithms 
can be used to estimate the diabetes risk for every patient, offering 
screening to those with an estimated risk above 1.5%.

We empirically ground our discussion by training statistical mod-
els that estimate diabetes risk using data from the National Health and 
Nutrition Examination Survey (NHANES). NHANES combines interview 
responses with laboratory data to provide insight into the health and 
nutritional status of adults and children in the United States. The survey 
is conducted every two years by the National Center for Health Statis-
tics and is frequently used by researchers to assess the prevalence of 
major diseases and their risk factors across the US population. In our 
analysis, we use the four NHANES cycles from 2011 to 2018. Following 
Aggarwal et al.3, we restricted our sample to 18,000 patients who were 
not pregnant, were 18–70 years old, and had a body mass index (BMI) 
between 18.5 kg m−2 and 50.0 kg m−2.

We now discuss the three fairness constraints above, in turn show-
ing how statistical risk algorithms that adhere to each constraint may 
lead to worse outcomes for minority and majority groups alike.

The consequences of blinding
In an attempt to limit the effects of demographic attributes on risk 
assessments, the principle of blinding mandates that algorithms not 
have access to certain demographic characteristics, such as race or 
ethnicity, when estimating patient risk. For example, diabetes risk may 
be estimated by a statistical risk algorithm that considers one’s age and 
BMI, but not their race or ethnicity. This principle is also sometimes 
called ‘fairness through unawareness’.

In the two plots on the left side of Fig. 1, we compare diabetes 
risk estimated by models that either exclude (left) or include (right) 
information on a patient’s race and ethnicity against empirical rates 
of diabetes prevalence. The model that is blind to a patient’s race and 
ethnicity systematically underestimates diabetes risk for Asian, Black 
and Hispanic patients, while it systematically overestimates diabetes 
risk for white patients—a problem that does not occur in the model that 
considers race and ethnicity.

Under the blind model, the ‘miscalibrated’ risk scores could in turn 
result in erroneous screening decisions for some patients. Imagine, 
for concreteness, a hypothetical 30-year-old Asian patient with a BMI 
of 21.5 kg m−2. Under the blind model, our hypothetical patient would 
have an estimated diabetes risk of approximately 1.15%, and so would 
not be screened based on the 1.5% screening threshold. However, as 
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example, by race and ethnicity. For instance, a policy following this 
constraint might enforce that the proportion of white patients who 
are recommended for diabetes screening is approximately equal to 
the proportion of Asian patients recommended for screening. As with 
blinding, equalizing decision rates may feel intuitively appealing. But—
also as with blinding—equalizing decision rates can likewise impose 
considerable costs on members of every group, due to the ‘problem 
of infra-marginality’82–89.

Returning to our running diabetes example, consider risk scores 
that are based on a patient’s age, BMI, and race or ethnicity (similar 
issues result if we start with the blind risk scores). The left panel of  
Fig. 2 shows the distribution of estimated risk scores, disaggregated by 
race and ethnicity. In this case, 76% of white patients have risk scores 
above the 1.5% screening threshold (indicated by the vertical black line), 
but 93% of Asian patients, 90% of Hispanic patients and 88% of Black 
patients are above the threshold. As a result, if we make the optimal 
decision for each individual patient—screening them if their likeli-
hood of having diabetes is above 1.5%—we would violate the principle 
of equalizing decision rates.

To equalize screening rates across racial and ethnic groups, we 
could set group-specific screening thresholds. Under a single, non-
group-specific screening threshold of 1.5%, approximately 85% of 
individuals are screened. To equalize screening rates, we could similarly 
choose to screen the riskiest 85% of each group. The vertical lines in 
the left panel of Fig. 2 show the corresponding group-specific screen-
ing thresholds for this policy. Under this approach, we would screen 
white patients with a risk score of approximately 1% or above, which 
includes many relatively low-risk white patients—namely those with 
risk between 1% and 1.5%—for whom we expect screening to impose 

net costs. Conversely, we would only screen Asian patients who have 
relatively high risk of diabetes, above approximately 2.5%. In this case, 
we would fail to screen many Asian patients for whom we expect screen-
ing to have net benefits. By equalizing decisions rates, we thus harm 
members of all racial and ethnic groups.

The consequences of equalizing error rates
A third popular class of fairness constraints requires that error rates 
be equal across groups. In the context of our running example, one 
might, for example, demand that the false negative rate of screening 
decisions be the same across racial and ethnic groups. This constraint 
means that among those who in reality have diabetes, the proportion 
who are not screened is the same across groups. As with blinding and 
equalizing decision rates, equalizing error rates has intuitive appeal, 
but it can harm members of all groups.

In the right panel of Fig. 2, we show the distribution of estimated 
risk among those patients who have diabetes, disaggregated by race 
and ethnicity. Under a policy of screening patients above a 1.5% thresh-
old (indicated by the vertical black line), the false negative rate for a 
group corresponds to the area under that group’s density curve that 
is to the left of the threshold. Specifically, white patients have a 1.7% 
false negative rate, meaning they would not be recommended for 
screening even though they have diabetes. In comparison, the false 
negative rate for Asian patients is less than 0.1%. As above, making the 
optimal screening decision for each patient would violate the principle 
of equalizing error rates.

Also as above, we could equalize false negative rates by setting 
group-specific screening thresholds. For example, if we screen white 
patients above a 0.9% threshold, and Asian patients above a 2.5% 
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Fig. 1 | The consequences of miscalibrated risk scores. Left: the estimated risk 
from race-blind and race-aware models against the observed rates of diabetes 
across demographic groups. The vertical black lines indicate a 1.5% screening 
threshold, above which the typical patient can expect to benefit from a screening. 
The diagonal dashed lines represent hypothetical risk scores that are perfectly 
calibrated to empirical diabetes rates. Right: the cost of using a race-blind model 
for Asian and white patients when compared against (more accurate) race-

aware risk scores. These plots show the distribution of race-aware risk scores 
for Asian and white patients, and the shaded areas show which patients would 
receive screening under the race-blind model. The dotted area, in particular, 
covers patients for whom the race-blind model makes a screening error, either 
because it fails to recommend Asian patients for screening (even though they 
would expect to benefit from a test) or because it recommends white patients for 
screening (when they would not expect to benefit from a test).
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threshold, then both groups would have a false negative rate of 0.7%. 
But such a policy would mean that we recommend screening for some 
relatively low-risk white patients and do not recommend screening for 
some relatively high-risk Asian patients, harming some individuals in 
both groups.

Trade-offs in resource-constrained settings
Risk-based screening for diabetes is a setting where policy choices are 
not constrained by resources—it is feasible to offer regular screening 
to every adult in the United States if that were determined to be medi-
cally advisable. In other scenarios, however, policy decisions have to be 
made under resource constraints, leading to inherent trade-offs that 
complicate the design of equitable algorithms. To illustrate, we tran-
sition from healthcare to the criminal-legal system, and consider the 
problem of increasing court appearance rates among individuals with 
upcoming court dates. In the United States, missed court dates typically 
prompt a judge to issue a ‘bench warrant’—mandating the individual to 
be arrested when they next encounter law enforcement—which in turn 
can lead to days or even weeks in jail90,91,105. Such incarceration imposes 
high costs on individuals and their communities, including job loss 
and social stigma92–95. Many people report missing their court appoint-
ments due to transportation barriers, and so one promising proposal 
to improve appearance rates and reduce the resulting incarceration 
is to provide individuals with transportation vouchers (for instance, 
for public transit or ride-share services)96. But these vouchers can be 
costly, and so such programs may not be able to provide transportation 
assistance to every individual who might benefit from it.

Given a budget constraint, policymakers implementing transpor-
tation-assistance programs face a difficult trade-off: on one hand, they 
will want to spend their budget strategically, to increase appearances 
as much as possible (and, accordingly, to maximally reduce incarcera-
tion); on the other, they might also be interested in achieving a certain 
racial or ethnic balance among those who benefit from a voucher. 
Consider the case of Boston, Massachusetts, where Black individuals 
tend to live farther away from the courthouse than white individuals, 
as shown in the map in Fig. 3. Because the costs of ride-share vouchers 
increase with the distance traveled, the demographic distribution of 
residents across the Boston area implies that, all else being equal, it 

would be more expensive to provide rides to Black individuals than to 
white individuals. As a result, a program solely focused on maximiz-
ing appearance rates would see more of its funds go to white clients. If 
instead one were to insist on equalized decision rates (that is, offering 
transportation assistance to an equal proportion of white and Black 
individuals), this would necessarily mean that fewer appearances can 
be achieved.

To make this trade-off more concrete, we describe the results of a 
simple, stylized simulation. Suppose that 5,000 white and 5,000 Black 
individuals in a fictional city have upcoming court dates. We imagine 
that it costs US$5 per mile to transport each individual from their 
home to the courthouse and back. But, as in Boston, our hypothetical 
Black individuals on average live farther from the courthouse than 
our hypothetical white individuals. Finally, we suppose that for each 
individual i, they would successfully make it to court if provided a 
ride-share voucher but, if not provided a voucher, would appear with a 
known probability pi—estimated, for example, with a model trained on 
historical court appearance data. Assuming we have a transportation 
budget of US$10,000, the right panel of Fig. 3 shows how the number 
of additional court appearances varies with the demographic alloca-
tion of vouchers, where each point on the curve corresponds to an 
allocation strategy that maximizes the number of appearances while 
ensuring a certain demographic composition of recipients. Among 
these policy options, there is no ‘correct’ choice. The best choice will 
depend on one’s preference for trading off the total number of court 
appearances with the distribution of vouchers across Black and white 
individuals, an idea we discuss more below. For now, we note that 
certain formal fairness constraints—for instance, requiring an equal 
proportion of white and Black individuals receive vouchers— represent 
but one among several options to make that trade-off.

A path forward
Our diabetes example suggests that adherence to popular fairness 
constraints often comes at the cost of inflicting additional burden 
on individuals, including those in marginalized groups. In our ride-
share example, where resources are limited, imposing formal fairness 
constraints can likewise result in allocation policies that do not reflect 
the preferences of stakeholders. This tension highlights the need for 
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http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | July 2023 | 601–610 605

Perspective https://doi.org/10.1038/s43588-023-00485-4

a robust discussion about the specific way in which proposed fair-
ness constraints are connected to the inherently normative concept 
of equity.

On one hand, the constraints could be understood as an end in and 
of itself. This conceptualization of fairness constraints is consistent with 
a deontological account of ethical decision-making, which postulates 
that an ethical decision is one that adheres to universally applicable, 
moral rules. Under this view, fairness criteria establish an outcome-
independent set of constraints that should be imposed for their own 
sake, without regard to the specific results in a particular context.

On the other hand, a competing understanding of fairness con-
straints treats them not as an end but as a means to achieve equitable, 
algorithmic decisions. Conceiving of constraints in this way is con-
sistent with a consequentialist account of ethical decision-making, 
whereby the morality of a decision is defined not by its dogmatic adher-
ence to a set of rules, but by the outcomes it achieves. Under a conse-
quentialist view, popular fairness constraints merely act as potentially 
useful heuristics to achieve desirable outcomes. However, if it can be 
demonstrated that a particular constraint imposes net burdens on 
marginalized groups, or society more generally, a consequentialist 
conception would counsel against adherence to the constraint, as it 
would not achieve its desired goal of furthering equity in that case.

Although fairness constraints are frequently promoted and imple-
mented, deeper discussions of their normative underpinnings are 
almost entirely absent from the literature (for a rare example, see Card 
and Smith73). In theory, treating fairness constraints as a dogmatic 
principle or as a useful heuristic appear defensible. In our example of 
estimating diabetes risk, advocates in favor of race-blind tools may, 
for instance, argue that it is inherently wrong to make decisions for an 
individual based on their (immutable) group membership, or that race-
based decision-making reinforces damaging beliefs about inherent 
differences between individuals of different racial groups. And perhaps 
some believe that these concerns outweigh the negative health effects 
that patients—particularly Asian patients—might experience under the 
race-blind algorithm. But irrespective of one’s particular preferences, 

we believe that a more considered discussion and explicit acknowledge-
ment of the potential cost of these constraints is necessary to avoid 
inflicting accidental harms.

We now conclude our discussion by considering four technical 
and policy-related aspects of algorithm design that we believe are 
critical to building more equitable tools: (1) grappling with the inher-
ent trade-offs that we highlighted above; (2) checking the calibration 
of predictive models; (3) judiciously selecting the target of prediction; 
and (4) appropriately collecting training data.

Grappling with inherent trade-offs
One way to make salient and arbitrate between the competing aspects 
of equity we describe above is to elicit the preferences of stakehold-
ers. To illustrate this approach in our example of allocating ride-share 
vouchers, we designed and administered a poll to a diverse sample of 
US citizens97. Mirroring our simulation above, survey respondents 
were introduced to a hypothetical jurisdiction with an equal propor-
tion of Black and white residents, with Black residents, on average, 
living farther from the courthouse than white residents. We then asked 
respondents to state how they would balance appearance rates (and, 
accordingly, incarceration for missed court appointments) with the 
demographic distribution of transportation assistance. To aid in their 
decision, participants were shown the graphic depicted in the left panel 
of Fig. 4. We ran our survey on the Prolific platform, with the distribu-
tion of self-identified sex, age and ethnicity in our sample designed to 
approximately match the distribution in the US Census. The survey 
resulted in 144 respondents.

The results of the survey are shown in the right panel of Fig. 4, and 
reveal that the respondents have highly heterogeneous preferences. 
Most frequently, respondents prefer a policy that mirrors the demo-
graphics of the underlying population (option C), but many respond-
ents prefer a different balance of ‘efficiency’ and ‘demographic balance’, 
favoring policies that shift more resources toward Black individuals. 
Only 19% of respondents prefer the efficiency-maximizing allocation 
policy that minimizes overall incarceration (option B).
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Fig. 3 | Inherent trade-offs in ride-share allocation arising from the 
geographic distribution of residents. Left: the geographic distribution 
of Suffolk County (Boston) residents, with the star marking the location of 
the main county courthouse, where most individuals would be required to 
appear for court appointments. In Suffolk County, white residents tend to live 
closer to the courthouse than Black residents. Right: illustration of a range 
of possible policy options to provide a hypothetical population of residents 

with a free ride to court, where each option maximizes appearances for a given 
distribution of vouchers. For example, if one wants 50% of vouchers to go to 
Black residents, given the existing budget, 710 additional people would get to 
court. Alternatively, under the same budget, a policy that aims to maximize 
appearances overall would allow 730 additional people to get to court and would 
have approximately 30% of rides offered to Black residents.
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Preferences elicited in this way are but one input into complex 
policy decisions. Further, while we surveyed a diverse sample of US 
citizens, identifying the relevant stakeholders is itself a difficult prob-
lem, defying general prescriptions. We hope, though, that this simple 
exercise demonstrates the feasibility of productively grappling with 
the thorny trade-offs at the heart of many policy design problems.

Checking calibration across groups
As its name suggests, the primary objective of a risk assessment algo-
rithm is to accurately estimate risk. Without care, however, it is com-
mon for statistical algorithms to systematically overestimate risk for 
some groups and underestimate risk for others—a problem that is also 
referred to as ‘miscalibration’. For example, in the left-most panel of 
Fig. 1, a 1% estimated risk of diabetes corresponds to an observed dia-
betes rate of about 0.5% for white individuals but about 1.6% for Asian 
individuals. These miscalibrated risk scores can lead to over-screening 
white patients and under-screening Asian patients, resulting in worse 
outcomes for individuals in both groups. Similarly, gender-blind risk 
assessment tools commonly used in the criminal-legal system to predict 
recidivism tend to systematically overestimate risk for women and 
underestimate risk for men12. These miscalibrated estimates can in 
turn lead to incarcerating women, who are much less likely to recidivate 
than their risk scores suggest.

Miscalibrated risk scores can typically be corrected by including 
group membership (for instance, race or gender) as a risk factor in a suf-
ficiently flexible predictive model or by fitting separate, group-specific 
models. Doing so, however, can run afoul of legal restrictions—for 
example, explicit considerations of race often receive heightened legal 
scrutiny in the United States, a standard that is notoriously difficult to 
satisfy. And even when legally permissible, race/ethnicity- and gender-
aware algorithms may not be socially or politically acceptable. As we 
discussed in the context of our running diabetes example, the use of 
race or ethnicity could reinforce pernicious attitudes about inherent 
differences between racial and ethnic groups, potentially outweighing 
the benefits of including these features in the models32. Regardless of 
whether one ultimately decides to include race, ethnicity, gender or 
other sensitive attributes in risk assessment algorithms, we believe it 
is important to assess whether the risk estimates are calibrated (like we 
do in Fig. 1). If risk scores are miscalibrated, it is useful to further exam-
ine how that effects downstream decisions (for example, screening 

recommendations) to better understand the consequences of exclud-
ing information, as in some cases the benefits of blinding may outweigh 
its costs (see, for example, Coots et al.103).

Selecting the target of prediction
Even when including information about group membership, it is still 
possible to have miscalibrated estimates if the labels available in the data 
are an imperfect representation of the true target of the prediction. This 
occurrence is known as label bias. For our running diabetes example, 
the NHANES data provide two pieces of information that we can use to 
construct a label for whether a patient has diabetes: (1) the results of a 
blood test administered to the entire survey population; and (2) whether 
the patient has ever received a diabetes diagnosis from a doctor. A dia-
betes label based solely on receiving a doctor’s diagnosis is often tied 
to how regularly a patient is seen by a doctor. But one can imagine that 
the frequency of seeing a doctor varies considerably across a number 
of dimensions. For instance, given the same health-related attributes, 
Black patients tend to go to primary care physicians less often than white 
patients98. And because the probability of detecting diabetes increases 
with the frequency with which a patient goes to the doctor, a dataset 
that records the presence of diabetes using a doctor’s assessment might 
systematically under-record the presence of diabetes in racial minorities. 
Consequently, a model trained on such a dataset would systematically 
underestimate the true diabetes risk of racial minorities, even if it is well 
calibrated to predicting a doctor’s diabetes diagnosis.

Figure 5 lends empirical support to these theoretical concerns by 
illustrating the negative effects of using a doctor’s diagnosis as a proxy 
for the presence of diabetes. It shows the risk scores of a model trained 
to predict the proxy (doctor’s diabetes diagnosis) using a patient’s age, 
race/ethnicity and BMI. Yet, in spite of supplying the model with data 
on group membership—race and ethnicity, in this case—the resulting 
risk scores are still miscalibrated when compared against the true 
label (blood test or doctor diagnosis) for each group. The risk scores 
produced using the proxy underestimate risk for all groups, but mis-
calibration is especially pronounced for Black, Asian and Hispanic 
patients. This pattern may in part stem from known racial disparities in 
healthcare access, with patients from minority racial groups less likely 
to have received a diabetes diagnosis from their doctor. The miscali-
brated risk scores could lead to under-screening of patients from all 
groups, but most severely for racial and ethnic minorities.
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Unfortunately, one’s ability to mitigate the effects of label bias is 
often heavily dependent on data availability. One possible solution is 
to adjust the target of prediction by focusing on or leveraging other 
outcomes that are less likely to exhibit bias. In our running diabetes 
example, we accomplish this by constructing a diabetes label using 
both the blood test results provided in the survey and whether the 
patient had ever received a diabetes diagnosis from a doctor. Because 
the blood test was administered to the entire population, using this 
information to construct the diabetes label fills in informational gaps 
that arise from relying solely on past diabetes diagnoses from a doctor. 
Zanger-Tishler et al.104 propose an alternative approach, observing that 
in some instances label bias can be mitigated by strategically excluding 
features from the predictive model. For example, when algorithms are 
constrained to predict healthcare costs as a proxy for healthcare need, 
one can improve accuracy on the true outcome of interest (health-
care need) by basing predictions only on markers of current health, 
excluding information on demographics and past healthcare costs. 
This is because conditional on current health, demographic and past 
healthcare expenditures are more indicative of access to care than 
medical need65, and so including that information worsens predictions 
of future need. Countering label bias is a challenging area of ongoing 
research and there is rarely a perfect solution, but when designing 
algorithmic tools for decision-making, it is imperative to scrutinize 
the data variables used—especially that of the target of interest—for 
potential sources of bias and mitigate downstream effects to the great-
est extent possible.

Collecting training data
Finally, we consider the role of training data in equitable algorithm 
design. A reasonable default is to train algorithms on data that are 

representative of the population to which the algorithms will be applied 
(though, as we note below, there are caveats to this heuristic). Failure 
to do so can lead to starkly inequitable outcomes. For example, in an 
analysis of automated speech recognition systems, Koenecke et al.99 
found that state-of-the-art models made twice as many errors transcrib-
ing Black speakers than they did for white speakers, a disparity that 
probably stemmed from a relative sparsity of speech data from Black 
speakers used to train the models. Similarly, in an assessment of image 
analysis tools, Buolamwini and Gebru35 found that popular algorithms 
performed substantially worse at classifying the gender of dark-skinned 
individuals compared with light-skinned individuals, probably due 
to a lack of dark-skinned faces in the training data—and the perfor-
mance was worst for dark-skinned women. In both of these examples, 
error rates by race and skin tone are a useful metric for auditing the 
algorithms because one would not generally expect the difficulty of 
transcribing speech or identifying gender to vary substantially across 
these categories. In contrast, in many risk assessment settings like our 
diabetes example, we expect risk distributions to differ across racial/
ethnic and gender groups, limiting the diagnostic value of comparing 
error rates in those cases.

Training algorithms with representative data is a useful starting 
point, but, like in many other contexts we discuss here, there are subtle-
ties to consider. For example, given a limited budget, the optimal data 
collection strategy depends on the statistical structure of the underly-
ing population, the cost of collecting data from different subgroups 
and the relative value of model performance across subgroups100. 
In particular, if the connection between features and outcomes is 
similar across subgroups, one might trade representativeness for 
more data from the subgroups for whom data acquisition is less costly. 
Conversely, if certain groups have idiosyncratic statistical properties, 
one might choose to oversample from them. In some cases, avail-
able features may not be as predictive for certain groups, potentially 
prompting the collection of additional features. In short, and in line 
with our general philosophy, it is important to carefully consider the 
trade-offs inherent to different data collection strategies.

Concluding thoughts
With the proliferation of algorithmically guided decision-making in 
healthcare, the criminal-legal system, banking and beyond, there is 
increasing need to ensure that algorithms are fair. A plethora of for-
mal fairness metrics and design principles have been proposed in 
recent years, particularly in the computer science community. But, 
as we have argued here, popular approaches to fairness often lead 
to worse outcomes for individuals, including those from marginal-
ized communities. In some cases, the conflict between formal fairness 
constraints and equitable outcomes suggests shortcomings of the 
constraints themselves. For instance, in our running diabetes example, 
it seems difficult to justify equalizing error rates on consequentialist 
grounds. In other cases, though, the tension is harder to allay. Diabetes 
risk estimates that consider race and ethnicity may lead to more accu-
rate screening decisions, but such non-blind algorithms might also 
validate and encourage insidious beliefs in inherent differences across 
groups, with possible negative repercussions for marginalized patients, 
many of whom already have substantial distrust in the US healthcare 
system32,98,101. There are often no easy answers to these difficult trade-
offs, but we hope our discussion equips researchers, practitioners and 
policymakers to make more informed choices.

Data availability
The data to reproduce our analysis are available at https://github.com/
madisoncoots/equitable-algorithms.

Code availability
The code to reproduce our analysis is available at https://github.com/
madisoncoots/equitable-algorithms.
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